Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 338-344, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38595255

RESUMO

OBJECTIVE: To observe the clinical effect of arthrocentesis combined with liquid phase concentrated growth factor (CGF) injection in the treatment of unilateral temporomandibular joint osteoarthritis (TMJOA), in order to provide a new treatment option for TMJOA patients. METHODS: In this non-randomized controlled study, patients diagnosed with unilateral TMJOA who visited the center for temporomandibular joint disorder and orofacial pain of Peking University School and Hospital of Stomatology from June 2021 to January 2023 were selected as research objects. The patients were divided into experimental group and control group, which were selected by patients themselves. The experimental group received arthrocentesis combined with liquid phase CGF injection and the control group received arthrocentesis combined with HA injection. Both groups were treated 3 times, once every two weeks. The clinical effect was evaluated by the maximum mouth opening, pain value and the degree of mandibular function limitation 6 months after treatment. The change of condylar bone was evaluated by cone beam CT (CBCT) image fusion technology before and after treatment. RESULTS: A total of 20 patients were included in the experimental group, including 3 males and 17 females, with an average age of (34.40±8.41) years. A total of 15 patients were included in the control group, including 1 male and 14 females, with an average age of (32.20±12.00) years. There was no statistical difference in general information between the two groups (P > 0.05). There were no statistical differences in the mouth opening, pain value and the degree of jaw function limitation between the two groups before treatment (P > 0.05), and all of them improved 6 months after treatment compared with before treatment (P < 0.05). However, the mouth opening of experimental group was significantly higher than that of control group 6 months after treatment (P < 0.05), and the degree of jaw function limitation was significantly lower than that of control group (P < 0.05). CBCT 2D images showed that the condylar bone of both groups was smoother after treatment than before treatment, and image fusion results showed that 10 patients (50.0%) in the experimental group and 5 patients (33.3%) in the control group had reparative remodeling area of condylar bone, and there was no statistical difference between them (P > 0.05). Except for one CGF patient, the other patients in both groups had some absorption areas of condylar bone. CONCLUSION: The arthrocentesis combined with liquid phase CGF injection can improve the clinical symptoms and signs of unilateral TMJOA patients in short term, and is better than HA in increasing mouth opening and improving jaw function. CBCT fusion images of both patient groups show some cases of condylar bone reparative remodeling and its relevance to treatment plans still requires further study.


Assuntos
Artrocentese , Osteoartrite , Feminino , Humanos , Masculino , Adulto , Adulto Jovem , Articulação Temporomandibular , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular , Resultado do Tratamento , Injeções Intra-Articulares , Ácido Hialurônico/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-38607203

RESUMO

Background: Coronary artery disease (CAD) is one of the leading causes of death in middle-aged and elderly people, and its incidence has been increasing in recent years. An in-depth understanding of the pathogenesis of CAD is important to ensure the health of CAD patients. Objective: To analyze the association of serum complement C1q with CAD," you could say something like "The objective of this meta-analysis is to investigate the relationship between serum complement C1q levels and the presence of CAD, aiming to provide insights for clinical diagnosis and treatment. Methods: Relevant studies on C1q and CAD were searched in PubMed, Web of Science and other literature databases. Two research team members independently cross-screened the literature according to the inclusion-exclusion criteria and assessed the literature quality. RevMan5.3 software was used for statistical analysis. Results: Three references were finally included, all of which had a Newcastle-Ottawa Scale (NOS) score ≥6, indicating high quality. A total of 2065 subjects were studied, including 1249 in the experimental group (CAD patients) and 816 in the control group (healthy population). Through the meta-analysis, it was found that the experimental group (CAD patients) had higher serum C1q than the control group (healthy controls) (P < .05). According to subgroup analysis, age, sex, sample size, diabetes mellitus (with/without), and serum complement C1q detection methods were not factors affecting the heterogeneity of the literature, and more data are needed for verification. Validation analysis with the fixed-effect model also showed higher C1q expression in the experimental group (P < .05). The graph of the funnel plot was basically symmetrical, suggesting low publication bias. Conclusions: Serum complement C1q is elevated in CAD patients, but its mechanism of action may have a dual effect, but further research is needed to understand its precise role and clinical implications.

3.
Nat Commun ; 15(1): 3289, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632231

RESUMO

Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.


Assuntos
Fibroínas , Seda , Humanos , Seda/química , Têxteis , Condutividade Elétrica , Fibroínas/química , Tato
4.
J Biochem Mol Toxicol ; 38(4): e23700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528705

RESUMO

Circular RNA is an important regulator for non-small cell lung cancer (NSCLC). Circ_0000735 has been found to be significantly overexpressed in NSCLC tissues. Therefore, its role and mechanism in NSCLC progression need to be further explored. The expression levels of circ_0000735, miR-345-5p and A disintegrin and metalloprotease 19 (ADAM19) were determined using quantitative real-time PCR. EdU staining, wound healing and transwell assays were utilized to detect cell proliferation and metastasis. The protein levels of metastasis markers, exosome markers and ADAM19 were determined using western blot. Animal experiments were performed to confirm the role of circ_0000735 in NSCLC tumorigenesis. The exosomes from cells and serum were identified using transmission electron microscopy and nanoparticle tracking analysis. We found that circ_0000735 was upregulated in NSCLC, and its knockdown repressed NSCLC cell proliferation and metastasis. In terms of mechanism, circ_0000735 targeted miR-345-5p to regulate ADAM19. MiR-345-5p inhibitor reversed the suppressive effect of circ_0000735 knockdown on NSCLC progression, and ADAM19 overexpression abolished the inhibition effect of miR-345-5p on NSCLC progression. Also, animal experiments showed that silencing of circ_0000735 reduced NSCLC tumorigenesis. In addition, exosomes mediated the intercellular transmission of circ_0000735, and serum exosomal circ_0000735 might be an important indicator for the diagnosis of NSCLC. In conclusion, circ_0000735 facilitated NSCLC progression via miR-345-5p/ADAM19 pathway, and serum exosomal circ_0000735 might be a potential biomarker for NSCLC diagnosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinogênese , Transformação Celular Neoplásica , Proliferação de Células , MicroRNAs/genética
5.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473942

RESUMO

Plant architecture is one of the key factors affecting maize yield formation and can be divided into secondary traits, such as plant height (PH), ear height (EH), and leaf number (LN). It is a viable approach for exploiting genetic resources to improve plant density. In this study, one natural panel of 226 inbred lines and 150 family lines derived from the offspring of T32 crossed with Qi319 were genotyped by using the MaizeSNP50 chip and the genotyping by sequence (GBS) method and phenotyped under three different environments. Based on the results, a genome-wide association study (GWAS) and linkage mapping were analyzed by using the MLM and ICIM models, respectively. The results showed that 120 QTNs (quantitative trait nucleotides) and 32 QTL (quantitative trait loci) related to plant architecture were identified, including four QTL and 40 QTNs of PH, eight QTL and 41 QTNs of EH, and 20 QTL and 39 QTNs of LN. One dominant QTL, qLN7-2, was identified in the Zhangye environment. Six QTNs were commonly identified to be related to PH, EH, and LN in different environments. The candidate gene analysis revealed that Zm00001d021574 was involved in regulating plant architecture traits through the autophagy pathway, and Zm00001d044730 was predicted to interact with the male sterility-related gene ms26. These results provide abundant genetic resources for improving maize plant architecture traits by using approaches to biological breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Fenótipo , Perfilação da Expressão Gênica , Ligação Genética
6.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391210

RESUMO

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Assuntos
Nostoc , Raios Ultravioleta , Humanos , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Nostoc/metabolismo , Fotossíntese/fisiologia
7.
Arch Gynecol Obstet ; 309(4): 1629-1641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315199

RESUMO

PURPOSE: Selecting the optimal blastocyst to implant during cryopreservation and warming is critial for in vitro fertilization success. Therefore, the aim of this study was to explore which blastocyst should be prioritized to be thawed when facing a single vitrified blastocyst on day 5 transfer. METHODS: A retrospective study including 1,976 single vitrified-warmed blastocyst transfer cycles was conducted from January 2016 to December 2020. RESULTS: We found that grade 4 vitrified blastocyst had a higher clinical pregnancy (60.64% vs. 49.48%, P < 0.001) and live birth rates (50.12% vs 39.59%, P < 0.001) than the grade 3 vitrified blastocyst. However, no statistical difference was found between groups in miscarriage rate, birth weight, or gestational age. Besides, the grade 4 vitrified-thawed blastocyst had significant potential to develop into grade 6 blastocyst after further culturing for 16 h (73.68% vs. 48.60%, P < 0.001). The grade 6 transferred blastocyst was markedly higher in both clinical pregnancy rate (61.88% vs. 51.53%, P < 0.001) and live birth rate (50.91% vs. 40.46%, P < 0.001) compared to grade 5 transferred blastocyst. CONCLUSIONS: Grade 4 vitrified blastocyst is recommended when facing single vitrified blastocyst on day 5 transfer. More importantly, the "embryonic escape hypothesis" was firstly proposed to reveal the findings.


Assuntos
Blastocisto , Nascido Vivo , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Taxa de Gravidez , Transferência Embrionária , Criopreservação , Vitrificação
8.
Am J Pathol ; 194(4): 482-498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280419

RESUMO

Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the buildup of plaques with the accumulation and transformation of lipids, immune cells, vascular smooth muscle cells, and necrotic cell debris. Plaques with collagen-poor thin fibrous caps infiltrated by macrophages and lymphocytes are considered unstable because they are at the greatest risk of rupture and clinical events. However, the current histologic definition of plaque types may not fully capture the complex molecular nature of atherosclerotic plaque biology and the underlying mechanisms contributing to plaque progression, rupture, and erosion. The advances in omics technologies have changed the understanding of atherosclerosis plaque biology, offering new possibilities to improve risk prediction and discover novel therapeutic targets. Genomic studies have shed light on the genetic predisposition to atherosclerosis, and integrative genomic analyses expedite the translation of genomic discoveries. Transcriptomic, proteomic, metabolomic, and lipidomic studies have refined the understanding of the molecular signature of atherosclerotic plaques, aiding in data-driven hypothesis generation for mechanistic studies and offering new prospects for biomarker discovery. Furthermore, advancements in single-cell technologies and emerging spatial analysis techniques have unveiled the heterogeneity and plasticity of plaque cells. This review discusses key omics-based discoveries that have advanced the understanding of human atherosclerotic plaque biology, focusing on insights derived from omics profiling of human atherosclerotic vascular specimens.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteômica , Aterosclerose/patologia , Macrófagos/metabolismo , Matriz Extracelular/patologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-38278045

RESUMO

Cys-loop ligand-gated channels mediate neurotransmission in insects and are receptors for many insecticides. Some insecticides acting on cysLGIC also have lethal effects on non-targeting organisms, but the mechanism of this negative effect is unclear due to information absence. The identification and analysis of cysLGIC family in Pardosa pseudoannulata, a pond wolf spider, can deepen the understanding of insecticides for natural enemy safety. Thirty-four cysLGIC genes were identified in P. pseudoannulata genome, including nicotinic acetylcholine receptors, γ-aminobutyric acid gated chloride channels, glutamate-gated chloride channels, histamine-gated chloride channels, and pH-sensitive chloride channels. The expansion of GABACls and HisCls accounts for the large number of cysLGICs in P. pseudoannulata, and the alternative splicing events in nAChR and RDL subunits enriched the diversity of the superfamily. Most cysLGIC genes show the highest expression in brain and lowest expression in the early-egg sac stage. Variable residues (R81, V83, R135, N137, F190, and W197) in P. pseudoannulata nAChR ß subunits and critical differences in α6 subunit TM4 region compared with insects would apply for the insensitivity to neonicotinoids and spinosyn. In contrast, avermectin and dieldrin may be lethal to P. pseudoannulata due to the similar drugs binding sites in GluCls compared with insects. These findings will provide a valuable clue for natural enemy protection and environmentally friendly insecticide development.


Assuntos
Animais Venenosos , Inseticidas , Canais Iônicos de Abertura Ativada por Ligante , Aranhas , Animais , Inseticidas/farmacologia , Sequência de Aminoácidos , Insetos/genética , Canais de Cloreto/genética
10.
Chin Med J (Engl) ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221772

RESUMO

BACKGROUND: We previously reported that activation of the cell cycle in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enhances their remuscularization capacity after human cardiac muscle patch transplantation in infarcted mouse hearts. Herein, we sought to identify the effect of magnesium lithospermate B (MLB) on hiPSC-CMs during myocardial repair using a myocardial infarction (MI) mouse model. METHODS: In C57BL/6 mice, MI was surgically induced by ligating the left anterior descending coronary artery. The mice were randomly divided into five groups (n = 10 per group); a MI group (treated with phosphate-buffered saline only), a hiPSC-CMs group, a MLB group, a hiPSC-CMs + MLB group, and a Sham operation group. Cardiac function and MLB therapeutic efficacy were evaluated by echocardiography and histochemical staining 4 weeks after surgery. To identify the associated mechanism, nuclear factor (NF)-κB p65 and intercellular cell adhesion molecule-1 (ICAM1) signals, cell adhesion ability, generation of reactive oxygen species, and rates of apoptosis were detected in human umbilical vein endothelial cells (HUVECs) and hiPSC-CMs. RESULTS: After 4 weeks of transplantation, the number of cells that engrafted in the hiPSC-CMs + MLB group was about five times higher than those in the hiPSC-CMs group. Additionally, MLB treatment significantly reduced tohoku hospital pediatrics-1 (THP-1) cell adhesion, ICAM1 expression, NF-κB nuclear translocation, reactive oxygen species production, NF-κB p65 phosphorylation, and cell apoptosis in HUVECs cultured under hypoxia. Similarly, treatment with MLB significantly inhibited the apoptosis of hiPSC-CMs via enhancing signal transducer and activator of transcription 3 (STAT3) phosphorylation and B-cell lymphoma-2 (BCL2) expression, promoting STAT3 nuclear translocation, and downregulating BCL2-Associated X, dual specificity phosphatase 2 (DUSP2), and cleaved-caspase-3 expression under hypoxia. Furthermore, MLB significantly suppressed the production of malondialdehyde and lactate dehydrogenase and the reduction in glutathione content induced by hypoxia in both HUVECs and hiPSC-CMs in vitro. CONCLUSIONS: MLB significantly enhanced the potential of hiPSC-CMs in repairing injured myocardium by improving endothelial cell function via the NF-κB/ICAM1 pathway and inhibiting hiPSC-CMs apoptosis via the DUSP2/STAT3 pathway.

11.
J Chem Theory Comput ; 20(3): 1157-1168, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38279919

RESUMO

Recently, a hybrid density functional valence bond (VB) method, λ-DFVB(U), has been proposed and shown to give accuracy that is comparable to that of CASPT2 in calculations of atomization energies, atomic excitation energies, and reaction barriers, while its computational cost is approximately the same as the valence bond self-consistent-field (VBSCF) method. However, the interaction between electronic states is not included in λ-DFVB(U) since the last step of λ-DFVB(U) is not a diagonalization of the Hamiltonian matrix on the electronic state basis. Therefore, λ-DFVB(U) gives the wrong topology of the potential energy surfaces (PESs) near the conical intersection region. In the present paper, we propose a novel hybrid density functional VB method with multistate treatment, named λ-DFVB(MS), in which an effective Hamiltonian matrix is constructed on the basis of the diabatic states obtained by the valence-bond-based compression approach for the diabatization scheme, and the interaction between electronic states can be included through the diagonalization of the effective Hamiltonian matrix. Test calculations show that λ-DFVB(MS) gives the correct topology of the PESs near the conical intersection region. We also show that the VBSCF wave function with selected VB structures can be applied as a reference in λ-DFVB(MS).

12.
Nat Commun ; 15(1): 815, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280849

RESUMO

Radiative cooling is a zero-energy technology that enables subambient cooling by emitting heat into outer space (~3 K) through the atmospheric transparent windows. However, existing designs typically focus only on the main atmospheric transparent window (8-13 µm) and ignore another window (16-25 µm), under-exploiting their cooling potential. Here, we show a dual-selective radiative cooling design based on a scalable thermal emitter, which exhibits selective emission in both atmospheric transparent windows and reflection in the remaining mid-infrared and solar wavebands. As a result, the dual-selective thermal emitter exhibits an ultrahigh subambient cooling capacity (~9 °C) under strong sunlight, surpassing existing typical thermal emitters (≥3 °C cooler) and commercial counterparts (as building materials). Furthermore, the dual-selective sample also exhibits high weather resistance and color compatibility, indicating a high practicality. This work provides a scalable and practical radiative cooling design for sustainable thermal management.

13.
Adv Sci (Weinh) ; 11(5): e2305339, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044319

RESUMO

Pivotal roles of extracellular vesicles (EVs) in the pathogenesis of central nervous system (CNS) disorders including acute brain injury are increasingly acknowledged. Through the analysis of EVs packaged miRNAs in plasma samples from patients with intracerebral hemorrhage (ICH), it is discovered that the level of EVs packaged miR-143-3p (EVs-miR-143-3p) correlates closely with perihematomal edema and neurological outcomes. Further study reveals that, upon ICH, EVs-miR-143-3p is robustly secreted by astrocytes and can shuttle into brain microvascular endothelial cells (BMECs). Heightened levels of miR-143-3p in BMECs induce the up-regulated expression of cell adhesion molecules (CAMs) that bind to circulating neutrophils and facilitate their transendothelial cell migration (TEM) into brain. Mechanism-wise, miR-143-3p directly targets ATP6V1A, resulting in impaired lysosomal hydrolysis ability and reduced autophagic degradation of CAMs. Importantly, a VCAM-1-targeting EVs system to selectively deliver miR-143-3p inhibitor to pathological BMECs is created, which shows satisfactory therapeutic effects in both ICH and traumatic brain injury (TBI) mouse models. In conclusion, the study highlights the causal role of EVs-miR-143-3p in BMECs' dysfunction in acute brain injury and demonstrates a proof of concept that engineered EVs can be devised as a potentially applicable nucleotide drug delivery system for the treatment of CNS disorders.


Assuntos
Lesões Encefálicas , Vesículas Extracelulares , MicroRNAs , Humanos , Animais , Camundongos , Células Endoteliais , Migração Transendotelial e Transepitelial , Astrócitos , Neutrófilos , Movimento Celular
14.
Opt Lett ; 48(24): 6573-6576, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099802

RESUMO

We propose a Mach-Zehnder interferometer based on an in-fiber ZnO microwire structure for ultraviolet sensing. The device undergoes femtosecond laser micromachining and chemical etching on a single-mode optical fiber initially, creating a microgroove that extends to half of the core's depth, into which a single ZnO microwire is transferred. The ZnO microwire and the remaining core are used as the sensing arm and the reference arm, respectively, forming a Mach-Zehnder interferometer. To enhance the stability and the sensitivity, ZnO nanoparticles are filled into the microgroove after the ZnO microwire is transferred. The fabricated device exhibits a sensitivity of 0.86 nm/(W·cm-2) for ultraviolet sensing, along with a response time of 115 ns (rise time) and 133 µs (decay time), respectively. The proposed sensor exhibits good ultraviolet sensitivity, offering a novel approach for ultraviolet sensing technology.

15.
Langmuir ; 39(45): 15942-15949, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37914676

RESUMO

Two-dimensional (2D) sheet-like biochar as promising alternatives to graphene nanosheets has gained significant attention in materials science while being highly restricted by its complicated synthetic steps. In this study, the dimethyl sulfoxide/potassium hydroxide (DMSO/KOH) superbase system was first used to pretreat sweet sorghum residues (SS) and then carbonized to prepare sheet-like biochar. Ascribing to the strong nucleophilicity of DMSO/KOH, a synergistic effect was achieved by partially removing non-cellulosic components in SS and swelling the amorphous region of cellulose, leaving more layered cellulose behind (∼46.5 wt %), which was favorable for the formation of 2D biochar nanosheets with high graphitization degrees (∼93.1%). This strategy was also suitable for other biomass fibers (e.g., straw, wood powders, and nuclear shells) to obtain sheet-like biochar. The resulting sheet-like biochar could be compounded with cellulose nanofibers to achieve the structural design of composites and solve the molding problem of biochar, which was beneficial for dyeing wastewater treatment. Thus, this work provides insight into a simple strategy for developing 2D ultrathin sheet-like biochar from sustainable biomass wastes.


Assuntos
Sorghum , Dimetil Sulfóxido , Carvão Vegetal/química , Celulose
16.
Small ; : e2308875, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880900

RESUMO

As a new approach to "More than Moore", integrated ionic circuits serve as a possible alternative to traditional electronic circuits, yet the integrated ionic circuit composed of functional ionic elements and ionic connections is still challenging. Herein, a stretchable and transparent ionic display module of the integrated ionic circuit has been successfully prepared and demonstrated by pixelating a proton-responsive hydrogel. It is programmed to excite the hydrogel color change by a Faraday process occurring at the electrode at the specific pixel points, which enables the display of digital information and even color information. Importantly, the display module exhibits stable performance under strong magnetic field conditions (1.7 T). The transparent and stretchable nature of such ionic modules also allows them to be utilized in a broad range of scenarios, which paves the way for integrated ionic circuits.

17.
Waste Manag ; 172: 80-89, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722222

RESUMO

Heat generation from degradation of organic matter in municipal solid waste (MSW) often leads to increased landfill temperature. However, it is difficult to measure environmental heat loss in laboratory and field tests; therefore, little research has been conducted to evaluate heat generation during waste degradation under different initial temperatures and moisture contents. In this study, tests were conducted to investigate the effects of initial temperature and moisture content on heat generation during waste degradation. A simple formula for calculating heat generation was proposed. Within 200 h, the waste temperature decreased by about 70%, and lower initial moisture contents were associated with greater temperature decreases. The smallest temperature decrease of 47% and the greatest heat generation occurred when the initial temperature was 40 °C. The initial moisture content increased from 30% to 60% and the heat generation increased from 5% to 36%. The heat generation per unit mass of organic matter during the aerobic and anaerobic stages were 19.44-23.77 and 0.27-0.50 MJ·kg-1, respectively, indicating that the proposed formula for calculation of heat generated from waste degradation was reasonable. The results presented herein provide theoretical support for the prediction of heat generation and the recycling of heat resources in MSW landfill sites.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Resíduos Sólidos/análise , Temperatura , Eliminação de Resíduos/métodos , Temperatura Alta , Instalações de Eliminação de Resíduos , Regulação da Temperatura Corporal
18.
Mikrochim Acta ; 190(10): 416, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768393

RESUMO

Macrophage senescence plays an important role in pathophysiological process of age-related diseases such as atherosclerosis, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and lung cancer. After macrophage senescence, the biochemical phenotypes related to biological functions showed great heterogeneity. However, the biochemical phenotype and phenotypic heterogeneity of senescent macrophage has not been fully understood. Exploring the phenotype of biochemical substances in senescent macrophage will be helpful for understanding the function of senescent macrophage and finding out the potential mechanism between immune macrophage senescence and age-related diseases. In this study, we employed SR-FTIR microspectroscopy to detect the biochemical phenotype and phenotypic heterogeneity of single macrophage. The whole infrared spectra of senescent macrophages shifted, indicating biochemical substance changes within senescent macrophages. PCA and intercellular Euclidean distance statistical analysis based on specific spectra regions revealed dynamic changes of lipids and proteins during macrophage senescence. This proved that SR-FTIR microspectroscopy is an effective tool to detect the single cell biochemical phenotype transformation and phenotypic heterogeneity during macrophage senescence. It is of great significance to provide an evaluation method or clue for the study of cellular functions related to intracellular biochemical substances.


Assuntos
Luz , Síncrotrons , Análise de Fourier , Macrófagos , Fenótipo
19.
Bioengineering (Basel) ; 10(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760164

RESUMO

Photoacoustic (PA) imaging can be used to monitor high-intensity focused ultrasound (HIFU) therapies because ablation changes the optical absorption spectrum of the tissue, and this change can be detected with PA imaging. Multi-wavelength photoacoustic (MWPA) imaging makes this change easier to detect by repeating PA imaging at multiple optical wavelengths and sampling the optical absorption spectrum more thoroughly. Real-time pixel-wise classification in MWPA imaging can assist clinicians in monitoring HIFU lesion formation and will be a crucial milestone towards full HIFU therapy automation based on artificial intelligence. In this paper, we present a deep-learning-based approach to segment HIFU lesions in MWPA images. Ex vivo bovine tissue is ablated with HIFU and imaged via MWPA imaging. The acquired MWPA images are then used to train and test a convolutional neural network (CNN) for lesion segmentation. Traditional machine learning algorithms are also trained and tested to compare with the CNN, and the results show that the performance of the CNN significantly exceeds traditional machine learning algorithms. Feature selection is conducted to reduce the number of wavelengths to facilitate real-time implementation while retaining good segmentation performance. This study demonstrates the feasibility and high performance of the deep-learning-based lesion segmentation method in MWPA imaging to monitor HIFU lesion formation and the potential to implement this method in real time.

20.
Mater Horiz ; 10(10): 4626-4634, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37594192

RESUMO

While nanomaterials possess impressive mechanical properties at the microscale level, their macroscopic assemblies usually exhibit inferior properties due to ineffective stress transfer among individual nanomaterials. This issue is addressed in this work by achieving strong interfacial interactions between aramid nanofibers and graphene oxide nanosheets through a neutralization reaction in a dipolar solvent and regulating the topological properties using polymer micelles to form a compact structure, leading to the formation of a super-strong and super-tough nanofiber film. The film was prepared through a sol-gel-film transition process and possesses a nacre-like microstructure that deflects microcracks and prevents them from propagating straight through the film. Remarkably, it demonstrates a tensile strength of 599.0 MPa and a toughness of 37.7 MJ m-3, which are 491.0% and 1094.5% that of a pristine aramid nanofiber film, respectively. In addition, it exhibits excellent tolerance to extreme temperatures (-196 to 300 °C) and fatigue resistance to folding 10 000 times. Overall, this study presents a synergistic interfacial and topological enhancement strategy for constructing nanomaterial-based composites with inherited properties from the nanoscale building blocks to the macroscale structural material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...